Еще о квантовых компьютерах, в контексте темы
"Сжатие информации (с точки зрения квантовой механики)"...
Квантовые свойства магнитных молекул, да и в целом - магнитная мезоскопика, представляют интерес в проблеме квантовых компьютеров, а также в задачах квантовой телекоммуникации и криптографии (“квантовой информатики”).
Вычисления отвечают законам эволюции состояний квантовой механики и, следовательно, описываются решениями уравнения Шредингера. Последнее обратимо во времени, поэтому вычисления и не сопровождаются потерей информации.
Простейший логический элемент - оператор преобразования между чистыми состояниями 0«1. Для спиновой системы этому оператору отвечает одна из матриц Паули sx. Если в качестве значений q-бита выступает проекция спина или поляризация фотона, то такая операция представляет собой поворот соответствующего вектора на угол p/2. В классической информатике этому элементу соответствует операция “не”. Уже найдены и экспериментально опробованы реализации и других логических элементов, так что на сегодня в квантовой информатике в принципе известно, как осуществить вычисления для произвольной логической функции.
Квантовый компьютер в целом представляет собой систему, состоящую из определенного набора ячеек, состояния которых кодируются q-битами, и логических элементов; состояние компьютера в любой момент времени определяется полной волновой функцией, зависящей от координат всех ячеек и их состояний. Эволюция во времени (процесс вычислений) определяется Гамильтонианом квантового компьютера.
Главное достоинство квантового компьютера основано на использовании принципа суперпозиции, позволяющего обрабатывать информацию параллельно, что колоссально ускоряет вычисления. Например, квантовый компьютер, оперирующий с 200 q-битами, может достичь такого же эффекта при разложении 400-разрядного числа на простые множители (это важная задача криптографии), как 2200 одновременных вычислений с классическими битами. Невозможно представить себе обычный компьютер с таким количеством процессоров. Специалисты говорят по этому поводу, что квантовый компьютер может производить подобные вычисления экспоненциально быстрее, чем лучшие из известных в настоящее время классических алгоритмов.
Еще одна серьезная проблема помимо когерентности (см.
пост) - обеспечение ввода и вывода информации и управление логическими элементами на атомном уровне. Магнитные молекулы здесь представляются особенно перспективными, поскольку они обладают большим спином в сочетании с бистабильностью, и, следовательно, достаточно сильным взаимодействием между собой и с внешними приборами. Роль бистабильной двухуровневой системы в этом случае может играть мезоскопический спин магнитной наночастицы. Благодаря сильной (экспоненциальной) зависимости частоты туннелирования от высоты потенциального барьера могут быть созданы элементы логики, управляемые изменением его высоты.
Квантовые методы обработки и передачи информации (криптография и телекоммуникация) уже выходят из лабораторий в мир практики. На этом пути решаются и технологические задачи конструирования наноструктур и создания суперпарамагнетиков.
К суперпарамагнетикам относятся ультрадисперсные магнитные материалы, среди которых есть и полимеры, и пластмассы, и жидкости, и жидкие кристаллы, а также нанокомпозитные металлические и органические с магнитными компонентами пленки. Изучение суперпарамагнетизма ультрадисперсных сред проводится представляет один из перспективных разделов современного материаловедения и инженерии, объединяемых понятием “высокие технологии”. Физика таких нанокомпозитных материалов и структурированных ансамблей, конечно, существенно зависит от индивидуальных свойств составляющих их наночастиц, но часто возникают общие черты в поведении материалов, обусловленные взаимодействием между частицами.
Подробнее в теме
"Сжатие информации (с точки зрения квантовой механики)".